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Abstract--The flow of an aerosol containing liquid droplets around an overheated body is considered. The 
liquid mass flux is assumed small enough to prevent formation of a liquid film on the body surface. 
Depending on the relative normal velocity, impinging droplets are either captured by the surface and 
ultimately evaporated or almost elastically thrown away, this change in the droplet behaviour causing the 
onset of a heat transfer crisis. The theoretical description of the dynamic and thermal interaction between 
the droplets and the surface is reduced to solving two independent problems. The first problem consists in 
the analysis of the dynamic Leidenfrost phenomenon and further calculation of the critical normal velocity 
of a single droplet as a function of physical and process parameters. The second problem involves 
determination of the field of droplet trajectories around the body on the basis of the conventional theory 
of inertial capture of suspended particles and subsequent calculation of the total liquid mass flux onto the 
surface, conditioned by a requirement that the droplet fall velocity exceeds the indicated critical value. 
Both these problems are studied. The distributions of the specific coefficient of heat removal due to 
evaporation over the sphere, cylinder and plate surfaces in a uniform aerosol flow are obtained under 

different circumstances. 

1, INTRODUCTION 

Cooling of hot surfaces by a flow of air containing 
droplets of water or of another liquid is of great prac- 
tical interest in many applications related to material 
processing. It offers a good opportunity to attain large 
local heat transfer coefficients as against those for a 
similar process of cooling by pure air under otherwise 
identical conditions. Sometimes, their values are com- 
parable with those reached when using a pure liquid. 
At the same time, this can be readily achieved with a 
small expenditure, that is, without an excessive con- 
sumption of dispersed liquid. The abundance of such 
cooling processes in modern power engineering, met- 
allurgy, cryogenics, and other fields of industry has 
necessitated the appearance of an enormous number 
of experimental works on the subject, representative 
examples of which are to be found in papers published 
over a period of several decades [1-8]. 

According to the majority of those works, the 
dependence of heat flux on the difference between the 
cooled wall temperature and the equilibrium boiling 
point of a dispersed liquid displays a descending 
segment, which bears a resemblance to that usually 
observed under the pool boiling conditions. Never- 
theless, it appears to be due to quite different reasons 
in the case of a large liquid mass flux and a relatively 
small overheat compared with the opposite case of a 
small liquid flux and an appreciable overheat. In the 
first case a liquid :film flowing along the wall is orig- 
inated. Under steady external conditions, the film 

t Present address : NASA Ames Research Center, Moffett 
Field, CA 94035, U.S.A. 

maintains a stationary state, since evaporation at the 
film free surface is completely compensated by an 
incessant liquid input coming from the collection of 
new droplets in the flow. Then the crisis seems to 
be merely a consequence of the transition from the 
bubbling to vapour-film heat transfer regime, just as 
happens in the pool-boiling processes. 

Quite a different physical reason turns out to be 
responsible for the heat transfer crisis in the second 
case, where there is no film on the high-temperature 
wall. As a droplet approaches that wall, it experiences 
a repulsive force generated by an excessive pressure 
inside a thin intervening vapour layer which separates 
the droplet from the wall. The interlayer is produced 
by intensive evaporation at the flattened part of the 
droplet surface facing the wall. If the wall overheat is 
small, the approaching droplet is capable of making 
actual touching contact with the wall, in which case it 
spreads over and eventually evaporates on the wall, 
thereby contributing to the overall heat take-off. If 
the overheat exceeds a certain critical level dependent 
on the droplet size and velocity, on the wall tem- 
perature and the physical parameters, the droplet 
behaviour changes radically: the spreading out and 
subsequent evaporation give way to the elastic 
rebound of the droplet without a noticeable loss of 
liquid by evaporation. As a result, the wetting regime 
of dilute mist transfer is replaced by the non-wetting 
one. Such an effect of the change in the very nature of 
the dynamic and thermal interaction of an impinging 
droplet with an overheated surface must be justly 
related to the dynamic Leidenfrost phenomenon. The 
latter has been extensively investigated earlier for both 
solid [9, 10] and liquid [11, 12] hot surfaces. 
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NOMENCLATURE 

vapour thermal diffusivity 
constituents of droplet kinetic energy 

total force acting on a droplet due to 
excessive pressure in vapour 
interlayer 
function introduced in equation (17) 
linear scale of immersed body 
vapour interlayer thickness 
dimensionless quantity introduced in 
equation (19) 
liquid mass flux density 
latent heat of evaporation 
scales of time and length, respectively 

thickness of liquid disc that models a 
droplet 
number concentration of droplets in 
uniform flow 
total heat flux from hot body due to 
evaporation 
heat flux density 
heat absorbed by one droplet in 
wetting and non-wetting regimes, 
respectively 
radius of liquid disc that models a 
droplet 
droplet radius 
Stokes number 
dynamic Leidenfrost temperature 
saturation (boiling) temperature of 
liquid 
wall temperature 

A T overheat 
At droplet residence time 
U potential energy of surface tension, 

also velocity of uniform flow 
u, critical droplet fall velocity 
V, v dimensionless and dimensional gas 

velocity 
V droplet volume 
Vo droplet fall velocity 
We Weber number 
x dimensionless radius of liquid disc 
z0 coordinate of liquid disc centre. 

Greek symbols 
ct attack angle 
A length scale of surface roughness 

dimensionless parameter defined in 
equation (16) 

(, ¢ dimensionless variables of equations 
(15)-(17) 

( ,  critical value of ~ determining capture 
cross section 

~/ dimensionless thickness of vapour 
interlayer 

0 angle coordinate 
)~ vapour thermal conductivity 
/~, v dynamic and kinematic vapour 

viscosity, respectively 
p liquid density 
~r surface-tension coefficient 
z, ~' dimensionless times. 

The mentioned situations of dense and dilute sprays 
are readily distinguishable in experiments since they 
display substantially different dependence on various 
physical and process parameters. For  instance, dense 
spray film boiling is almost insensitive to the droplet 
size and is practically independent of the overheat, 
whereas in the dilute case both the droplet radius 
and wall overheat exhibit a drastic influence on heat 
removal from a cooled wall [7, 8]. This is quite con- 
ceivable, since in the first case the collection of droplets 
by the film depends on the droplet parameters merely 
through the droplet Stokes number influencing the 
process of inertial capture of droplets by a body 
immersed in a mist flow. Moreover, the temperature 
at the film-gas interface is the same irrespective of the 
actual cooled surface temperature, and as such does 
not affect the process altogether. Conversely, in the 
second case the process of the interaction of the sur- 
face with the impinging droplets is very sensitive to 
all the droplet parameters as well as to those that 
characterize the surface. 

Theoretical investigation of the dispersed flow heat 

transfer is limited mostly to the film boiling regime 
with evaporation from the free film surface. Some 
examples of theoretical approaches suggested so far 
are given in refs. [13-15]. Attempts have also been 
made to retain the underlying concept of film boiling 
when dealing with the processes that involve rarefied 
mists in which nothing like a continuous film occurs 
[8]. This is obviously incorrect, and the study of  such 
processes should be based, in fact, on the con- 
sideration of the behaviour of a single droplet nor- 
mally falling onto a hot wall, as is the case in refs. [9, 
10] and also in refs. [16, 17]. In the present paper 
only those processes are considered in which a cooled 
surface remains predominantly dry because the 
impinging droplets either rebound from the surface 
or have sufficient time to evaporate before a further 
portion of droplets will add liquid when hitting the 
surface in turn. 

It should be emphasized that the paper has no rel- 
evance to the familiar problem of heat transfer of 
unidirectional dispersed flows in channels with high- 
temperature walls. 
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2:. BASIC M O D E L  

When a cloud of droplets incident on a high-tem- 
perature body is sufficiently sparse, each droplet 
behaves almost like an independent object, save for 
the possible impact of a new droplet on the moist spot 
originated by the preceding one and for the possible 
effect of vapour emerging due to evaporation at the 
surface on other approaching droplets. It is evident 
that in the dilute limit the probability of the former 
event tends to zero and the influence of the latter effect 
has to degenerate. 'Thus, setting aside for the moment 
the discussion of  collective effects of different origins, 
we shall resort to a tentative concept of independent 
droplets. Then, the total heat flux from the surface 
will consist of  additive contributions from individual 
droplets except for a convective part resulting from 
heat transfer to the dispersed flow on the whole and 
for radiation. 

Different constituents of the spray heat transfer as 
well as diverse observable behaviours of the droplets 
as they impact against the surface, such as rebound, 
disintegration and violent splashing, have been con- 
sidered by many researchers and, in particular, in refs. 
[5, 8-11, 16]. As a first reliable approximation, such 
details may be ignored and it may be presented next 
that there is a sharp transition from the wetting regime 
of complete evaporation to the non-wetting rebound 
regime as the surface overheat grows. In the first 
regime the droplet:~ spread out over the surface and 
add to the heat take-off by absorbing the latent heat 
needed to evaporate them. In the second regime the 
droplets are elastically repelled by the vapour cushion 
forming beneath them at the cooled surface, without 
an appreciable loss of  mass. After that, they do not 
take part in heat transfer at all. With other conditions 
fixed, such a transition occurs at a certain definite 
value of the droplet fall velocity and apparently cor- 
responds to the cri,;is commonly observed. 

If  one ignores heat transfer resulting from conduc- 
tion, convection and radiation, then the onset of the 
crisis will signify the cessation of heat removal as the 
said value of the fall velocity is reached. That even 
such a rough picture is not so crude as it might appear 
is evidenced by numerous experiments. The excess of 
the total heat flux over that caused solely by the latent 
heat of  the evaporation of liquid trapped by the sur- 
face constitutes not more than a few tens of  per cent 
before the crisis and, similarly, just after the crisis that 
flux abruptly falls down to about twenty per cent or 
less of its original value [6]. Moreover, it means that 
the total flux in the evaporation regime may suc- 
cessfully be approximated by allowing only for the 
latent heat of the liquid-vapour phase transition. 

The description of the dynamic interaction of indi- 
vidual droplets with a body immersed in a mist flow is 
always reduced to the study of the droplet trajectories 
which somewhat deviate from the flow streamlines 
due to inertial effects. If there were no repulsive forces, 
this purpose would ihave been accomplished by solving 

the familiar problem of the inertial capture of aerosol 
particles by a body [18-20]. According to the con- 
ventional theory of those phenomena, all the particles 
the trajectories of which intersect the body surface are 
supposed to be trapped if the secondary rebound is 
negligible. It means that any particle that actually 
touches the body is assumed to be retained by it. 

If  the body is overheated so that a vapour interlayer 
evolves bringing about the origination of a repulsive 
force which slows down the droplet under con- 
sideration as it undergoes deformation and flattens 
out while approaching the body, the field of droplet 
trajectories can be proved to remain the same as if the 
body were cold everywhere except for a narrow region 
in the close vicinity of the surface. Presuming the 
droplet Reynolds number to be large and neglecting 
the existence of that region, we are able to determine 
the trajectory field from a suitable solution of the 
inertial capture problem with no regard for the body 
overheat. In order to be actually caught by the surface, 
any droplet must have a normal velocity exceeding 
the above-mentioned critical value. It implies that 
only those droplets which satisfy the last requirement 
ought to be regarded as trapped and contributing to 
the heat removal, thus giving a necessary condition 
for finding out the liquid mass flux to the surface and 
then for evaluating the local heat transfer coefficient. 

If the droplet fall velocity is maintained constant, 
the crisis can be described in an alternative way. As 
the temperature difference between the surface and 
the liquid on the verge of boiling increases, the total 
number of captured droplets firstly remains constant, 
then begins to decrease and finally comes to zero at a 
certain critical value of this difference. The cor- 
responding surface temperature is commonly referred 
to as the dynamic Leidenfrost temperature. 

Thus we arrive at two problems that have to be 
resolved when addressing the cooling of a hot body 
with the help of a dilute mist flow. First, the critical 
normal velocity must be found as a function of all 
the parameters at a given surface temperature. This 
amounts to developing the theory of the dynamic Lei- 
denfrost phenomenon. Second, the field of droplet 
trajectories under appropriate flow conditions has to 
be determined, for which purpose it suffices to use 
the conventional theory of inertial capture. Such a 
subdivision of a rather complicated original problem 
into two simpler ones becomes possible since the 
details of the droplet interaction with the body surface 
are assumed to be of no consequence for the bulk of 
the flow. They are needed merely to decide whether a 
particular droplet will be captured or not. 

The outline of the present paper is as follows. 
Firstly, the critical droplet impact velocity is found on 
the basis of the model developed in ref. [17]. This 
is done under the restriction that the initial droplet 
temperature coincides with that of boiling so that 
there is no need to consider the heating of droplets as 
they approach an overheated surface. This analysis 
leads to a very simple resulting expression of the criti- 
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cal velocity. Then, flows around a sphere and across 
a cylinder as well as around a plate at different attack 
angles are considered. This permits the effective cross 
section of inertial capture to be calculated as a func- 
tion of that velocity and of other relevant parameters 
in all those cases. The findings allow the density dis- 
tribution of the flux of captured droplets over the 
surface of a body of any indicated form as well as 
corresponding distribution of the local heat transfer 
coefficient due to evaporation to be obtained in 
different circumstances. The presentation partly fol- 
lows that used by the present authors in their papers 
[17, 21], which seem to be hardly accessible to English- 
speaking readers. 

It should be mentioned that the primary goal of the 
work is to give account of a concise and com- 
prehensive physical picture of what happens when a 
thin mist flows across an overheated obstacle, rather 
than to work at particulars needed to correlate actual 
experiments. 

3. DYNAMIC LEIDENFROST PHENOMENON 

A rigorous analysis of the dynamic and thermal 
interaction of an overheated solid wall with an 
impinging droplet demands a joint problem of hydro- 
dynamics and convective heat transport with an 
unknown interface to be studied with allowance for 
phase transition at the interface. This problem is over- 
complicated and can hardly be resolved at present 
without resorting to a number of decisive simplifying 
assumptions. While referring the readers to ref. [17] 
for a thorough discussion of the problem, here the 
assumptions and main conclusions of the approximate 
model suggested in the paper cited will be briefly 
outlined. 

First of all, the dependence of all the dynamic and 
thermophysical properties of both liquid and its 
vapour upon temperature are neglected. Furthermore, 
the following phenomena are purposely overlooked : 

(1) viscous energy dissipation inside of a droplet 
which changes the droplet form as it 
approaches the wall ; 

(2) the reactive component of the total force acting 
on the droplet which is due to evaporation from 
the part of the interface facing the wall as well 
as the force constituents owing their origin to 
the gravity and fluid drag ; 

(3) the part of the excessive pressure within the 
vapour interlayer separating the droplet from 
the wall which is due to purely hydrodynamic 
factors originating when the interlayer gradu- 
ally changes its thickness at a constant tem- 
perature and in the absence of evaporation ; 

(4) the forces of molecular attraction between the 
wall and the liquid-vapour interface ; this might 
be of importance in the case of very smooth 
surfaces, but it can be shown to be negligible if 

the length scale of the wall roughness exceeds 
~ 1 0 - T m ;  

(5) dynamic and thermal slip effects which are also 
insignificant for rough surfaces. 

In contrast to most of the works in which a great 
deal of attention has been paid to the above effects, it 
should be emphasized here that all of these effects can 
be proved to be of no major consequence for the 
process under study in the sense that they do not 
cause a considerable influence either quantitatively or 
quantitatively. (Exceptions are the effects (4) and (5) 
which are of crucial importance in the Leidenfrost 
phenomenon for both sessile and impinging drops in 
the case of a molecularly smooth wall [22].) Moreover, 
all of the above-enumerated assumptions can be 
avoided at the cost of making calculation more 
tedious and cumbersome but without introducing 
any major new difficulties. 

Far more restrictive are additional assumptions 
which we put forward in order to get the necessary 
results in a tractable form. First, a liquid disc shown 
in Fig. 1 (a) will be considered instead of the real 
deformable droplet. If the disc volume V is taken 
constant, then its radius R and thickness 21 are con- 
nected by the obvious relation 

2nlR 2 = V = (4•/3)R0 3. (1) 

Such an assumption is quite common in the current 
literature. In a general case, the arbitrary droplet form 
is described by using an infinite number of scalar 
parameters, such as coefficients, at different spherical 
harmonics needed for the purpose. The present 
assumption amounts, inasmuch as equation (1) holds 
true, to making use of only one scalar parameter (say, 
R) on purely empirical grounds, and so corresponds 
to the simplest way of defining the droplet form. 

Second, the flow and heat transfer within the 
vapour interlayer of uniform thickness h are supposed 
to be quasi-stationary. This is permissible if the 
characteristic time scales, that is h2/v and h2/a, are 
much smaller than the relevant time scale of the drop- 
let motion near the wall, which is of the order of 
hldh/dt1-1. 

Finally, to simplify the calculation, it is accepted 
that the impinging droplets are heated up to the equi- 
librium boiling temperature. This makes unnecessary 
the treatment of their heating in the vicinity of the 
wall. Generalization to the important case of sub- 
cooled droplets can be extended with the help of the 
methods developed in ref. [23]. 

Consider now the full energy of the droplet. It 
includes the kinetic energy El of translational motion 
of the droplet as a whole, the kinetic energy E2 of 
internal axisymmetric flow inside the droplet owing to 
the change in its form, and the potential energy U of 
surface tension [17] : 

pV{dz°~ 2 ~- ( I+ 8 R60~dR~ 2 
El 2 \d tJ  E 2 = ~  - 3 ~ J \ d t J  
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Fig. 1. Sketch of a droplet modelled as a liquid disc (a) and dynamics of a dimensionless disc radius (b) 
and vapour interlayer thickness (c) at We = 1 and 3 (dashed and solid curves, respectively). 

U = 2 a ( n R 2 + ~  V) (2) 

where Zo = h + ,  and V and I are related to R and Ro 
by equation (1). 

The energy conservation law yields 

dE~ +dE2 + d U  = f dh (3) 

wheref is  the force exerted by pressure on the droplet 
in the vapour interlayer. Complementary to equation 
(3) is the relation 

dEl = f d z 0  = f ( d h + d l )  (4) 

which follows directly from Newton's second law. 
To find the force f ,  we need to solve first the heat 

conduction problem under the conditions of constant 
temperatures Tw and T~ at the wall and interface, 
respectively, and then the hydrodynamic problem of 
flow within the planar vapour interlayer under the no- 
slip condition at tile wall and with the vapour source 
at the interface. The source intensity is dictated by 
the requirement that all the heat transferred to the 
interface must be spent on evaporation. Neglecting 
radiation and omitting the intermediate calculations, 
we obtain the final result in the quasi-stationary 
approximation 

37t v2AT R 4 

f 2 L h 4 a T  = Tw-- Ts. (5) 

Let us introduce the following dimensionless variables 
and parameters : 

R h t pRov~ 
X = ~ o  ° r / : = ~  ~=Lt t  W e =  6a 

R~/4 

(pR3o'~ 1/2 
= eR0 Lt = ~-ff~-a ] " (6) 

Here Lh and Lt are the natural scaling parameters of 
length and time, respectively, We is the effective Weber 
number and e presents a measure of the interlayer 
thickness in terms of the droplet size, and v0 is the 
initial velocity of the droplet. The parameter e for 
water, hydrocarbons and most other liquids is of the 
order of 10-2-10 -~ at R0 = 10 -3 m. It becomes com- 
parable with unity only for very small droplets which 
are molecular clusters rather than macroscopic 
objects. This means that ~ can be used as a small 
parameter. 

By using equations (1) and (2), equations (3) and 
(4) can be transformed into differential equations, 
which may be written down in an explicit dimen- 
sionless form with the help of equations (5) and (6). 
This yields [17]: 

( 8 ' ] ~ x  $3-/t16{dx'~ 2 I x 2 
l + 3 x 6 J d . r 2 - . ~  \ ~ /  "{-x x 2 q4 (7) 

d2r/ 2 d2x 6 [ d x \  2 1 x 4 

d e  x 3 d e  

The initial conditions, which correspond to the 
droplet falling from infinity onto the wall with an 
originally constant velocity v0, are to be formulated in 
the following form : 
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1 
x = l  q = r/0 > -  

8 

d x  dq (We) 1/2 
- -  = a t  ~ = 0 .  ( 8 )  d~ 0 d~ e 

They agree with the substitution of the droplet by a 
disc and are convenient for numerical calculations. 

Equations (7) govern a nonlinear oscillating system 
with two degrees of freedom. The amplitudes of the 
oscillations of dimensionless variables can be shown 
to be of the same order of magnitude, while the oscil- 
lation frequency scales with L~- 1. Typical dependences 
of x and ~/ on dimensionless time are illustrated by 
Figs. 1 (b) and (c). The initial period of aperiodic 
decrease in r/ and of corresponding increase in x 
reflects the approach of the droplet to the wall when 
the former gets considerably broadened and enlarges 
its surface, transforming the kinetic energy into the 
potential energy of surface tension. Next both x and 
~/undergo irregular oscillations for some time, during 
which they reach several maxima and minima in suc- 
cession. This is representative of the droplet bouncing 
on the underlying vapour cushion. After that, ~/soon 
becomes an infinitely increasing function, whereas 
both x and r/ continue to oscillate, the average of 
x tending to unity. This corresponds to the droplet 
rebound. That there is no damping of such residual 
oscillations is quite understandable, since within the 
framework of the above model no account is made 
of viscous dissipation. The asymptotic value of the 
droplet energy after the impact happens to be different 
from the initial energy because of the work 
accomplished by force f for the time of interaction 
with the wall through the vapour interlayer. The 
behaviour of the droplet, as revealed by solutions of 
equations (7) and (8), is consistent, with manifold 
phenomenological observations [9-12]. 

It should be pointed out that, within the framework 
of the model developed, the impinging droplet is 
surely repelled if the wall is smooth. This conclusion 
is entirely due to the neglect of the dependence of the 
boiling point on pressure in accordance with the liquid 
saturation line. Such a dependence is crucial for 
explaining the Leidenfrost phenomenon on molec- 
ularly smooth surfaces [22]. However, in practice it is 
insignificant for most real rough surfaces and so may 
be ignored. 

Since the evolution of different quantities pertaining 
to the droplet behaviour has been discussed elsewhere 
[17], it will not be discussed here in more detail. What 
is important in the context of this paper is that the 
droplet will certainly be thrown away if the part of its 
surface facing the wall never contacts the projections 
on the wall in the course of the droplet bouncing. 
Thus, it is natural to accept that the crisis occurs when 
the smallest value of the interlayer thickness becomes 
equal to the mean height of the projections, which is 
characteristic of the wall roughness. This leads to a 
definition of the dynamic Leidenfrost temperature TL 
through relations 

3 - -  

1 - 

I I 
1 3 

We 

Fig. 2. Parameter eqm~, vs We at e = 0.005, 0.01, 0.02, 0.05 
and 0.1 (curves 1-5, respectively). 

4 aLRo 4 rw = 

TL 

A = L h r l m i n ( S L ,  We) = 8LR0t ]min ( [ :L ,  We) (9) 

with the parameters ~ and We being identified in equa- 
tion (6). The quantity ~/min as a function of those par- 
ameters has to be found by solving problems (7) and 
(8) with the help of numerical methods, as illustrated 
in Fig. 2. 

Determination of either TL with other parameters 
fixed or the critical value of We at a given Tw involves 
a tedious numerical calculation. To make the matter 
simpler, we turn our attention to elementary physical 
reasoning. It follows from the very form of equations 
(7) that q4 can be excluded at negligible e to yield the 
only equation for x which does not include q. This 
means that the droplet oscillations have to be approxi- 
mately regarded as independent of the interlayer 
thickness. The inverse statement that the thickness 
should not depend on the droplet deformation at small 

has to be true as well. This amounts to a hypothesis 
that the functional dependence of ~rnin on ~ and We 
incorporated into equations (9) must not contain any 
parameters affecting only the deformation, such as the 
surface-tension coefficient. There is a unique com- 
bination of  ~ and We that does not involve a and, 
therefore, we get 

R--O = /~min  : F Wee " ( 1 0 )  

F being an unknown function of its argument. 
A simple recalculation of the results shown in Fig. 

2 gives the curves plotted in logarithmic coordinates 
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Fig. 3. Dependence of 10 g e~/mm on 10 g e at We = 0.5, 1, 2, 3 and 5 (curves 1-5) (a) and on 10 g We at 
e = 0.005, 0.01, 0.02, 0.05 and 0.1 (curves 1-5) (b). 

in Fig. 3. The curves happen to be straight lines, and 
the analysis shows that F(y) = Ay 1/3, with A being an 
unknown numerical coefficient. Then equation (10) 
transforms into 

/~ve l /3  ~min = -~4/~4/3. (11) 

To determine A, it is necessary to calculate the 
quanti ty on the left-hand side of  equation (11) with 

Table 1. Values of 104e We ~/3 ~lmln at different We and 

We We 1/3 e 10% W e  1/3 qmin 

0.5 0.79 0.005 6.0 
0.01 15.0 
0.02 37.8 
0.05 128.1 
0.1 329.3 

1.0 1.0 0.005 6.6 
0.01 18.4 
0.02 38.0 
0.05 128.8 
0.1 331.1 

2.0 1.26 0.005 6.0 
0.01 15.1 
0.02 38.0 
0.05 128.8 
0.1 331.4 

3.5 1.52 0.005 6.0 
0.01 15.2 
0.02 38.2 
0.05 129.4 
0.1 325.0 

5.0 1.71 0.005 6.1 
0.01 15.2 
0.02 38.3 
0.05 129.7 
0.1 325.0 

the help of  equations (7) subject to conditions (8). 
The results are collected in Table 1. The computations 
give A = 0.7. The use of  the definitions in equations 
(6) and (11) yields 

3 v 2 R o A T  A T  = Tw--Ts .  (12) 
u~ - 2 p L A  3 

Thus, a lengthy and complicated manipulat ion leads 
to rather a simple representation of  the desired critical 
fall velocity u..  The non-wetting and wetting regimes 
of  spray heat transfer occur when the normal com- 
ponent of  the droplet velocity is smalter and larger 
than u. ,  respectively. The dependence o f  the critical 
velocity on the droplet radius R0 and wall overheat  
AT  as well as on the physical parameters v, 2 and L 
is qualitatively confirmed by the bulk of  available 
experiments. Of  special interest is its strong depen- 
dence on the length scale A of  wall roughness. Bearing 
in mind that the definition of  A presents some diffi- 
culties, it is suggested that it should be regarded as an 
empirical parameter specific to the wall in question. 

4. INERTIAL COLLECTION OF DROPLETS 

Now we undertake a trajectory analysis of  the cap- 
ture of  droplets from a uniform monodisperse gas-  
liquid mixture flow by immersed bluff solid obstacles. 
Because the gas density is much smaller than that of  
the liquid, it is possible to neglect all the gas inertial 
effects and write down an equation of  Newton 's  
second law for a single droplet in the following form 
[18, 19]: 
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d2p dp 
Stdz,-- S + ~ = V(p) (13) 

where the following new dimensionless variables and 
a parameter are introduced 

r Ut v 2pR~ U 
z' = (14) p = ~ = ~ V ~ S t -  9#H 

r standing for the radius vector of the droplet centre 
and U and H being the gas velocity far upstream of 
an obstacle and the obstacle length scale, respectively. 
Initial conditions are to be imposed by requiring dr/dt 
to turn to U at an infinite distance from the obstacle. 
The mixture is assumed dilute, so that the gas velocity 
field v(r) is the same as in a similar pure gas flow and 
may be regarded as known. In what follows, the flow 
is considered as that of  an ideal fluid with no account 
of the far-wake displacement effect or of the gas-phase 
flow separation, the influence of which was studied 
earlier in ref. [20]. 

4.1. Collection efficiencies of  cylindrical and spherical 
bodies 

A sketch of the flow either across a cylinder or 
around a sphere is given in Fig. 4(a). In the case of a 
cylinder equation (13) transforms into [2 l] 

(a) 

-3 -2 -1 0 

9 0 -  

, v /  //,¢---,o 
o . ,  

° / I l l / J  

, 
0.5 1.0 

Fig. 4. Sketch of flow around a cylinder or sphere (a), solid 
and dashed curves represent streamlines and droplet tra- 
jectories, and dependence of the angular coordinate of the 
point of contact of a droplet with the surface on upstream 
droplet coordinate (b) ; solid and dashed lines in (b) pertain 
to a cylinder and sphere, respectively; figures at the curves 

give St values. 

2 d~ {2 _~2 
s td2~  + = 1 

dz,2 d~" ({2 +(2)2 

s td2~  d~ 2{( (15) 
dr'-" +d~'= (¢2+(2)2 

the definition of the dimensionless coordinates being 
evident from the sketch, and H being understood as 
the cylinder radius. This set of equations has to be 
integrated numerically to yield the droplet trajectory 
field. The dependence of the angular coordinate of the 
points of intersection of those trajectories with the 
cylinder surface at the droplet location far upstream 
at different Stokes numbers are presented in Fig. 4(b). 
The values ( = ( , (0)  that correspond to 0 = n/2 deter- 
mine the effective dimensionless cross section of the 
inertial collection of droplets 2 ( ,  under usual con- 
ditions, when it is sufficient for a droplet to touch the 
surface in order to be trapped. 

However, if only those droplets make actual contact 
with the surface, the normal velocity of  which is in 
excess of u, ,  the collection efficiency is determined by 
the function ~ = ~,(u,/U). This quantity can be found 
by solving equations (15). Its dependence on u , /U is 
plotted in Fig. 5. It is convenient to relate the number  
flux J of droplets to the upstream value J0 = nU of 
this flux, n being the droplet number  concentration. 
Then the solution of equations (15) enables us to draw 
the angular distribution of the dimensionless flux of 
the droplets that are really captured over the cyl- 
indrical surface. The corresponding curves are plotted 
in Fig. 6 at different values of St. 

Similar results for a sphere are to be obtained in the 
same manner,  save for the fact that equations (15) 
now have to be replaced by [21] 

d2~ " d~ 2~2 _ (2  
St~r,2+~Tr,= 1 2(42+(2) 5/2 

1.0 1.0 

~, 0.5 

0.0 
0.0 1,0 

7 

0.5 

0.5 

u,/U 

Fig. 5. Dimensionless effective droplet capture cross sections 
( ,  (cylinder, solid lines) and (~ (sphere, solid lines) vs u,/U 
at St = 0.5, 1, 2, 5, 10, 20 and 50 (curves 1-7, respectively). 
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1 . 0 ~ ~  ..-. b ,  

o 

~ 0.5 

0.0 45 90 

O [°1 

Fig. 6. Distribution of relative flux density of droplets over 
cylindrical and spherical surfaces ; notation is the same as in 

Fig. 5. 

s d2( d( 3 4( 
td- ~ -t dr '  2 2({ 2 +(2)5/2 (16) 

and that the capture cross section equals n(2. This is 
illustrated by dashed lines in Figs. 4(b), 5 and 6. 

In both cases considered, ( ,  decreases mon- 
otonously as u,/U grows. A maximum of ~, at u, = 0 
and a finite value of u,/U at which ~, tends to zero 
are dependent only on the Stokes number. The drop- 
lets are collected by the central part of either the 
cylindrical or spherical surface with 0 < O,(u,/U), O, 
turning to zero simultaneously with ( , .  

d2{ d( 
Stz-TZ.~df, + ~ = cosc t -G(~,  0 sinct 

G ( ~ , ) = { [ ( { 2 + ( 2 - 1 ) 2 + 4 { 2 ] ' / 2 - ( { 2 + ( 2 - 1 ) }  ' / 2 . 2 [ ~ :  2 + ( ( +  1)21 

(17) 

Here the dimensionless variables explained in Fig. 7 
are used and H is understood to be a half of the plate 
width. A model of flow without separation at the plate 
edges and with circulation, introduced to prevent the 
gas velocity from going to infinity at the back edge, is 
employed when writing down equations (17). 

Figure 8 presents the distributions of the dimen- 
sionless normal velocity of droplets that come to the 
front part of the plate surface at different attack 
angles. As before, only those droplets whose normal 
velocity exceeds u, are actually collected. A simple 
analysis of the curves in Fig. 8 evidences that this 
condition can be satisfied in the peripheral regions of 
the plate surface much easier than in the central region 
in the cases when the attack angle is either equal or is 
sufficiently close to hi2. If  the flow is essentially 
oblique (small ~), the droplets are mainly captured in 
the region adjacent to the front edge of the plate. 

These results and the trajectory field, also to be 
found from solving equations (17), give an oppor- 
tunity to deduce distributions of the droplet flux den- 
sity over the plate surface similar to those drawn in 
Fig. 6. By way of example, such distributions at 
different values of St and c( and at u,  = 0 are presented 
in Fig. 9. 

4.2. Collection efficiency of an inclined plate 
Flow across a solid plate of finite width is illustrated 

by Fig. 7. In this case equations (15) or (16) must be 
substituted by [21] 

dZ~ d~  G (~, () sin o~ s t  

4.3. Heat transfer due to evaporation 
Droplets that are collected by the surface of an 

overheated body eventually evaporate and so provide 
for an effective heat removal. The heat flux density 
distribution caused by evaporation is governed by 
the corresponding droplet flux density J and is to be 
defined simply as 

q = (4rc/3)RgpLJ. (18) 

Fig. 7. Sketch of flow around a plate ; solid and dashed curves 
show streamlines and trajectories of droplets. 

The total amount of heat removed from the body 
as a result of droplet evaporation is to be found by 
integrating equation (18) over the whole body surface. 
The dependence of this quantity Q upon u,/U at 
different values of St is illustrated for cylindrical and 
spherical bodies in Fig. 10, and also for plates at 
different values of St and c( in Fig. 11. By using equa- 
tion (12), one is able to recalculate the curves of Figs. 
10 and 11 to get analogous dependences of Q on 
the body overheat AT = Tw-- Ts. As has already been 
pointed out, the constituent of the heat take-off due 
to evaporation can be thought of as a good approxi- 
mation of the overall heat transfer from a body to a 
mist flow. This is why the mentioned curves as well as 
the dependences of Q upon AT may be interpreted as 
theoretical representatives of the declining sections of 
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Fig. 8. Distribution of the dimensionless normal velocity of droplets making contact with the front part of 
the plate surface at various attack angles ((a), (b), (c) and (d) correspond to ct = 90, 45, 30 and 15 °, 

respectively) and at St = 0.5, 1, 2, 5, 10 and 20 (curves 1-6, respectively). 

the commonly observed mist flow heat transfer curves 
[1-8]. 

It should be stressed that, in compliance with the 
above discussion of collection efficiency and with the 
general character of  those curves, the transition from 
the wetting to the non-wetting regime of heat transfer 
does not occur at some definite value of the body 
overheat but takes place gradually as the overheat 
increases within a certain range. Such an intermediate 
situation may be properly termed as a 'transition' heat 
transfer regime. 

It is instructive to compare heat removal from a hot 
surface caused by the complete evaporation of the 
droplet with that ensured by the same droplet as it 

evaporates while bouncing on the vapour interlayer 
at the surface. In the first case the heat absorption is 
characterized by ql = (4n/3)R3p L (cf. equation (18)). 
In the second case 

f ~  2AT 2 L t  /'oo x 2 
q2 = o~ l~R2-- f f -d t= rrRo~,AT--~hhI I =  J _ ~ - d z  

(19) 

where the scales Lt and L h a r e  identified in equation 
(6) and x and t/have to be calculated with the help of 
the methods of the preceding Section. It is not difficult 
to show that the ratio q2/qt is quite small under usual 
experimental and industrial conditions. 
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Fig. 9. Distribution of the relative droplet flux density over the front part of the plate surface; notation is 
the same as in Fig. 8. 

A constituent of  the overall heat transfer resulting 
from convective heat conduction can be described by 
standard means which are discussed in many text- 
books and manuals, and so there is no need to dwell 
on them in this paper. 

To conclude, it should be pointed out that appli- 
cation of  the above methods is subject to the usual 
constraints of  the conventional  theory of  aerosols. In 
particular, if  droplets are very fine then inertial effects 
are negligible, and transport of  the droplets to a sur- 
face is governed by either molecular or turbulent 
diffusion rather than by the processes of  inertial col- 
lection [18, 19]. 

5. D I S C U S S I O N  

The novel feature of  the developed theory is that it 
explains particulars of  dilute mist flow heat transfer 
without introducing oversimplified empirical notions, 
in contrast to virtually all the previous relevant papers 
of  which the present authors are aware. As a matter  
of  fact, the contents of  the present paper include two 
mutually supplemental sections. The first offers a 
realistic model  of  an elementary act of  interaction of  a 
single droplet with an overheated wall and so concerns 
modelling of  the dynamic Leidenfrost phenomenon.  
The second section has relevance to the interaction of  
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Fig. 10. Dimensionless total heat removal due to evaporation 
versus dimensionless critical velocity at St = 0.5, I, 2, 5 and 
50 (curves I 5, respectively) from a cylinder and sphere (solid 

and dashed curves, respectively). 

a flowing gas-liquid disperse mixture with a hot body 
under the assumption of mutual  independence of the 
effects caused by individual droplets. Although a pre- 
cise comparison of the obtained results with exper- 
imental findings is not part of the intended goal of 
this paper, the correlation of  the model with accessible 
observations merits a brief discussion. 

As pertains to the Leidenfrost phenomenon,  a 
major difficulty is that different researchers use differ- 
ent sets of control parameters to correlate their results, 
hence a considerable scatter of  data and some con- 
tradictions take place. With regard to this, it is worth 
noting that the paper could be helpful for exper- 
imentalists in that it indicates natural  dimensionless 
parameters, namely We and e, which should be used 
while evaluating and interpreting their findings. 
Nevertheless, there is a satisfactory agreement of the 
theory with experiments in both qualitative and quan- 

titative respects, in spite of the approximate character 
of  the theory. 

By way of example, we consider the conclusions 
made in ref. [16]. In the non-wetting regime, the resi- 
dence time At of a droplet on a heated wall can be 
defined, which has to be understood as the duration 
between the droplet impinging upon the wall and 
rebounding from it. It follows from Fig. 1, and from 
other calculations of the same kind, that the cor- 
responding dimensionless time interval practically 
depends neither on We nor e, and may be taken as 
Az = 6. Then 

T 
= = . - -  . ( 2 0 )  

That this quantity is independent of the wall tem- 
perature is convincingly corroborated by ref. [16]. 
Moreover, the numerical coefficient 0.75 that appears 
in equation (20) is close to zr/4 = 0.785. The latter 
value results f rom relating At to the natural  vibration 
frequency of a liquid sphere and provides for a good 
quantitative agreement with the experimental data 
[16]. 

Furthermore,  by using equations (9) and (11), one 
gets the following formula for the dynamic Leiden- 
frost temperature 

p L  vo2A 3 
TL = T~+0.65- v (21) 

v,~ R0 

The dependence of TL on R0 was measured in ref. [16] 
as well. However, the relationship between v0 and R0 
remained unknown.  Although the droplet fall velocity 
v0 could vary somewhat at fixed radius, there is a 
strong correlation between these two variables. The 
correlation can approximately be described with the 
help of the quadratic fluid drag law for steady fall of 
a droplet under gravity, which gives Vo ~ Rio/2. Then 
TL in equation (21) happens to be insensitive to the 

10 050 _ 

. . . .  - - "  \ II 2 

0 . 5 -  . \ 2  

0.0 0.5 1.0 
0.0 0,5 1,0 

u, /U u, /U 

Fig. 11. Dimensionless total heat removal due evaporation from a plate as a function of dimensionless 
critical droplet velocity at ~ = 90, 60 and 45 ° (in (a) solid, dashed and chain-dotted lines, respectively) and 
at ~ = 30 and 15 ° (solid and dashed curves in (b)) : curves 1-3 correspond to St = 0.5, 2 and 10, respectively. 
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droplet size, as wa,; concluded in ref. [16]. Moreover, 
there is a good quantitative agreement between equa- 
tion (21) and the data for water and ethanol droplets 
[16]. 

When turning to heat removal from the wall 
ensured by a single droplet in the non-wetting regime, 
we must use equation (19) which can be rewritten in 
the form 

= ( 2 2 )  
\ ~ V l  

C being a numerical coefficient. 
Evaluations of f based on the definition of I in 

equation (19) show it as being weakly dependent on 
We, if We is not  too small. Next, the characteristic 
values of dimensionless variables q and x during the 
period of the droplet bouncing at the wall are directly 
and inversely proportional to e, respectively, within 
the finite ranges of the latter parameter. This makes 
for a rough estimate I ~ e -a, SO that equation (22), 
with allowance for equation (6), yields 

q2 "~ (L/v)  (ptr)ll2 g7/2. (23) 

However crude, this estimate evidences that q2 ought 
to be almost independent of the overheat and the 
fall velocity at fixed R0, which again agrees with the 
observations of reE [16]. That  both the wall overheat 
and the droplet velocity have little effect upon heat 
transfer in the non-wetting regime complies with 
observations of others (e.g. refs. [9-12]). The depen- 
dence of q2 on the droplet size deviates somewhat from 
that in ref. [16] where it was concluded that the heat 
absorption attributed to one droplet should increase 
with the droplet diameter cubed. Nonetheless, the 
difference is not  large. 

In the dilute limit, the distribution of the heat flux 
density due to evaporation over the cooled surface is 
to be obtained by multiplying either qj or q2 by J (cf. 
equation (18)). Since the droplet parameters influence 
the collection efficiency and so affect the liquid mass 
flux density J, the dependence of the heat flux density 
on these parameters is modified as compared with 
that of heat absorption per droplet. However, the 
dependence on the overheat remains the same. These 
conclusions hold for both wetting and non-wetting 
regimes and agree with experimental evidence. 
However, the situation changes in the transition 
regime. 

Inherent to the last regime is that the surface under 
question is divided into two regions, in which the non-  
wetting and wetting regimes are established. As the 
surface overheat grows at all other parameters fixed, 
the former region expands and the latter one contracts 
and then vanishes. Thus the overall heat flux becomes 
dependent on the !parameters in a more complicated 
way and, in particular, decreases monotonously with 
the overheat. This is consistent with all the known 
observations and explains the crisis of  dilute mist heat 
transfer. Direct comparison of theoretical predictions 

with experiments is hindered by the latter usually 
being carried out under  flow conditions essentially 
different from those considered above (for instance, 
under jet flow conditions). Nevertheless, the dis- 
tr ibution of the liquid mass flux over a cylindrical 
surface (Fig. 6) is well confirmed by the results of  ref. 
[20]. 

It is not  intended to indicate here the possible ways 
of avoiding the restrictive assumptions imposed 
earlier, especially as such ways are for the most part 
quite obvious. Three promising directions of future 
work should be mentioned. First, to study the effect 
of  subcooling of impinging droplets, it is necessary to 
consider the heating of a droplet as it approaches a 
hot wall, for which purpose the methods suggested in 
ref. [23] are applicable. Second, it seems to be reason- 
able to treat a local drop in the wall temperature 
beneath an evaporating droplet, for which purpose a 
combined problem of heat conduction in both the 
vapour interlayer and the bulk of a cooled body has 
to be investigated. Thirdly, even though collisions of 
droplets near the body surface might be ignored, the 
evaporation gives rise to a vapour flow off the surface 
that can effect the behaviour of the impinging droplets 
to a considerable extent and, moreover, can cause 
the occurrence of a peculiar self-oscillating regime of 
dilute mist heat transfer [24]. 
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